Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9497, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308524

RESUMEN

The non-biodegradable nature of waste emitted from the agriculture and industrial sector contaminates freshwater reserves. Fabrication of highly effective and low-cost heterogeneous photocatalysts is crucial for sustainable wastewater treatment. The present research study aims to construct a novel photocatalyst using a facile ultrasonication-assisted hydrothermal method. Metal sulphides and doped carbon support materials work well to fabricate hybrid sunlight active systems that efficiently harness green energy and are eco-friendly. Boron-doped graphene oxide-supported copper sulphide nanocomposite was synthesized hydrothermally and was assessed for sunlight-assisted photocatalytic degradation of methylene blue dye. BGO/CuS was characterized through various techniques such as SEM-EDS, XRD, XPS, FTIR, BET, PL, and UV-Vis DRS spectroscopy. The bandgap of BGO-CuS was found to be 2.51 eV as evaluated through the tauc plot method. The enhanced dye degradation was obtained at optimum conditions of pH = 8, catalyst concentration (20 mg/100 mL for BGO-CuS), oxidant dose (10 mM for BGO-CuS), and optimum time of irradiation was 60 min. The novel boron-doped nanocomposite effectively degraded methylene blue up to 95% under sunlight. Holes and hydroxyl radicals were the key reactive species. Response surface methodology was used to analyze the interaction among several interacting parameters to remove dye methylene blue effectively.

2.
Heliyon ; 9(1): e12950, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36820186

RESUMEN

Spar caps, which cover 50% of the cost of windmill blades, were made of unidirectional and biaxial glass/carbon reinforcements of 600 gsm with thicknesses ranging from 100 to 150 mm for blades 70-80 m long. The significance of this study was to utilize an economical biodegradable material i.e bamboo fabric of 125 gsm to fabricate a lightweight composite and study its behavior for spar caps applications. The aim of this research was to investigate the effect of weave pattern and composite size at coupon level under thermal, dynamic, water absorption, and flammability conditions. Composites comprising 125 gsm plain and twill weave bamboo as reinforcements/AI 1041 Phenalkamine bio-based hardener with epoxy B-11 as matrix were tested. Thermo-Gravimetric Analysis revealed that the weave pattern and composite thickness had an effect on the rate of weight loss and sustenance until 450 °C. The pattern had an effect on the glass transition temperature, as seen by Differential Scanning Calorimetry. The weave pattern and size thickness had an effect on energy storage and dissipation, displaying the damping behavior in DMA. The weave pattern and size had an effect on the rate of water absorption, which saturated after a few hours. The wettability and thickness of composites hampered the burning rate, with 5.4 mm thickness resulting in a 30% decrease.

3.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144912

RESUMEN

The development of aluminium composite with the inclusion of advanced materials is a continuous research process due to the increasing industrial demand for advanced hybrid materials. To cater for this need, this research work focuses on the development of Al 7075 alloy reinforced with TiB2 and graphene and on the evaluation of its strengthening mechanism. Two different modes of improving the strength of the hybrid composite have been followed; one is by the inclusion of graphene at three levels of 0.1, 0.2 and 0.3%, and another by the processing route, squeeze casting technique by compression of the molten hybrid composite slurry before casting. The microstructure and characterisation of the composite material are examined and analysed with the help of XRD, SEM, EDAX and chemical spectroscopy. A microstructure evaluation is employed to justify the homogenous dispersal and the existence of reinforced particles. A tensile test is conducted at room temperature and high temperature environments to assess the tensile strength. The research outcome affirms that a significant improvement in tensile and hardness has been noted in comparison with base alloy. The fracture-morphology results affirm the change in fracture mode from brittle to ductile when the tensile testing environment changes from room temperature to high temperature. Finally, the dispersion strengthening mechanism is validated with an empirical approach.

4.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145044

RESUMEN

The boiling crisis or critical heat flux (CHF) is a very critical constraint for any heat-flux-controlled boiling system. The existing methods (physical models and empirical correlations) offer a specific interpretation of the boiling phenomenon, as many of these correlations are considerably influenced by operational variables and surface morphologies. A generalized correlation is virtually unavailable. In this study, more physical mechanisms are incorporated to assess CHF of surfaces with micro- and nano-scale roughness subject to a wide range of operating conditions and working fluids. The CHF data is also correlated by using the Pearson, Kendal, and Spearman correlations to evaluate the association of various surface morphological features and thermophysical properties of the working fluid. Feature engineering is performed to better correlate the inputs with the desired output parameter. The random forest optimization (RF) is used to provide the optimal hyper-parameters to the proposed interpretable correlation and experimental data. Unlike the existing methods, the proposed method is able to incorporate more physical mechanisms and relevant parametric influences, thereby offering a more generalized and accurate prediction of CHF (R2 = 0.971, mean squared error = 0.0541, and mean absolute error = 0.185).

5.
Materials (Basel) ; 15(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35744410

RESUMEN

The present study aimed at evaluating the mechanical performance under bending loads of circular hollow sections of steel. Different bending tests have been carried out by applying two-point loads, to determine and examine the effects of the diameter, the thickness of the section, and the span of the beam on the performance of the steel tube. The effects of square opening and variation in the number of openings on the performance of these sections have also been examined. Ten samples of hollow circular beams of varying thickness (2 mm, 3 mm, and 6 mm), varying diameter (76.2 mm, 101.6 mm, and 219 mm), and varying span (1000 mm, 1500 mm, and 2000 mm) were fabricated and tested for pre-failure and post-failure stages. The dimensions of the reference specimen considered were 3 mm in thickness, 101.6 mm in diameter, and 1500 mm in span. The results have shown that on increasing the section thickness by 200%, ductility and bearing strength were enhanced by 58.04% and 81.75%, respectively. Meanwhile, decreasing the section thickness by 67%, ductility and bearing strength were reduced by 64.86% and 38.87%, respectively. Moreover, on increasing the specimen diameter and on decreasing span, a significant increase in bearing strength and stiffness was observed; however, ductility was reduced. Meanwhile, on increasing the span of the specimen, all the parameters observed, i.e., bearing strength, stiffness, and ductility, decreased. On observing the ultimate strength of each specimen with square opening, the ultimate strength was reduced by 17.88%, 19.71%, and 14.23% for one, two-, and three-square openings, respectively. Moreover, the ductility was significantly reduced by 72.40%, 67.71%, and 60.88% for one, two-, and three-square openings/apertures, respectively, and led to the sudden failure of these specimens. The local buckling failure dominated for specimens having a D/t ratio more than 50 and showed very negligible levels of ovalization of the cross-section. Local buckling failure was observed to be prevented after providing the circular rings in the specimen, since bearing strength increased compared with the specimen without rings.

6.
Materials (Basel) ; 15(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683224

RESUMEN

Circular hollow steel tube columns are widely used in high-rise buildings and bridges due to their ductility and lower weight compared to reinforced concrete. The use of this type of steel section has several advantages over using reinforced concrete members. The present study investigates the bending behavior of steel circular hollow sections when subjected to bending loads. The variations in material characteristics with regard to position along the cross-section of a steel tube member is first considered in this experimental study, providing for a more accurate definition of the material behavior in the model. A supported beam tested by two-point loads is the loading type that is used to study the bending performance of steel tubes. Ten circular hollow beam specimens were prepared and tested up to and post the failure stage with the following dimensions: thickness (2, 3, and 6 mm), diameter (76.2, 101.6, and 219 mm), and span (1000, 1500, and 2000 mm). A finite element analysis has been conducted for these ten specimens using the ANSYS program. The finite element model is compared to experimentally obtained data to verify that both local and global behaviors are correctly considered. The load-deflection results of this analysis showed a good agreement with the experimental results. A parametric study also was performed that considered two variables, which were the effect of the presence of circular rings and the change of opening location in the length direction on the specimens' behavior. This study showed that the presence of the circular rings in the specimen led to an increase in its ultimate strength (of 53.24%) compared with the non-presence of these rings. In contrast, the presence of openings at 30, 40, and 50% from the specimen length reduced the strength capacity by 8.76, 14.23, and 17.88%, respectively.

7.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458951

RESUMEN

Combining two types of reinforcement fiber in a common matrix may lead to different failure modes such as micro-cracks between the layers when the structure is subjected to lower stress levels. Real-time damage detection should be integrated into the hybrid composite structure to provide structural integrity and mitigate this problem. This paper outlines the working mechanisms and the fabrication of an integrated capacitive sensor in an intra-ply hybrid composite (2 × 2 twill weave). Uniaxial tensile and flexural tests were conducted to characterize the proposed sensor and provide self-sensing functionality (smart structure). The sensitivity and repeatability of the capacitive sensor were measured to be around 1.3 and 185 µΔC/Co, respectively. The results illustrate that onset of damage between layers can be detected by in situ monitoring. It can be seen that the initial damage was detected at the turning point where the relative change in capacitance begins to reduce while the load increases. Finite element modeling was also constructed to analyze the test results and explain the reasons behind the turning point. It was shown that the carbon yarns experienced high transverse shear stress (τxz) in the crimp region, leading to inter-fiber cracks.

8.
Micromachines (Basel) ; 14(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36677136

RESUMEN

Extensive amount of research on additively manufactured (AM) lattice structures has been made to develop a generalized model that can interpret how strongly operational variables affect mechanical properties. However, the currently used techniques such as physics models and multi-physics simulations provide a specific interpretation of those qualities, and are not general enough to assess the mechanical properties of AM lattice structures of different topologies produced on different materials via several fabrication methods. To tackle this problem, this study develops an optimal deep learning (DL) model based on more than 4000 data points, which has been optimized by analyzing three different hyper-parameters optimization schemes including gradient boost regression trees (GBRT), gaussian process (GP), and random forest (RF) with different data distribution schemes such as normal distribution, nth root transformation, and robust scaler. With the robust scaler and nth root transformation, the accuracy of the model increases from R2 = 0.85 (for simple distribution) to R2 = 0.94 and R2 = 0.88, respectively. After feature engineering and data correlation, the stress, unit cell size, total height, width, and relative density are chosen to be the input parameters to model the strain. The optimal DL model is able to predict the strain of different topologies of lattices (such as circular, octagonal, Gyroid, truncated cube, Truncated cuboctahedron, Rhombic do-decahedron, and many others) with decent accuracy (R2 = 0.936, MAE = 0.05, and MSE = 0.025). The parametric sensitivity analysis and explainable artificial intelligence (by using DeepSHAP library) based insights confirm that stress is the most sensitive input to the strain followed by the relative density from the modeling perspective of the AM lattices. The findings of this study would be helpful for the industry and the researchers to design AM lattice structures of different topologies for various engineering applications.

9.
Polymers (Basel) ; 13(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34641256

RESUMEN

Effect of parameters affecting solid particle erosion of crumb rubber epoxy composite is investigated. Five important process parameters-impact velocity, impingement angle, standoff distance, erodent size, and crumb rubber content-are taken into consideration. Erosion rate and erosion efficiency are included as the chief objectives. The Taguchi coupled gray relational analysis type statistical model is implemented to study interaction, parameters' effect on responses, and optimized parameters. ANOVA and regression model affirmed impingement angle and crumb rubber content play a significant role to minimize the erosion. Validity of the proposed model is justified with the standard probability plot and R2 value. A confirmation experiment conducted with A2B2C3D3E3 condition registers noticeable enhancement in GRG to the tune of 0.0893.

10.
Materials (Basel) ; 14(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576481

RESUMEN

Two-body abrasive wear behavior of glass fabric reinforced (GC) epoxy and titanium dioxide (TiO2) filled composites have been conducted out by using a tribo test machine. GC and TiO2 filled GC composites were produced by the hand layup technique. The mechanical performances of the fabricated composites were calculated as per ASTM standards. Three different weight percentages were mixed with the polymer to develop the mechanical and abrasive wear features of the composites. Evaluation Based on Distance from Average Solution (EDAS), a multi-criteria decision technique is applied to find the best filler content. Based on the output, 2wt% TiO2 filler gave the best result. Abrasive wear tests were used to compare GC and TiO2 filled GC composites. The abrasion wear mechanisms of the unfilled and TiO2 filled composites have also been studied by scanning electron microscopy. The outcome of the paper suggests the correct proportion of filler required for the resin in order to improve the wear resistance of the filled composites. Taguchi combined with Multi-Criteria Decision Method (MCDM) is used to identify the better performance of the TiO2 filled epoxy composites.

11.
Materials (Basel) ; 14(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576483

RESUMEN

This work mainly focuses on increasing the mechanical strength and improving the corrosion resistance of an aluminum alloy hybrid matrix. The composites are prepared by the stir casting procedure. For this work, aluminum alloy 8079 is considered as a base material and titanium nitride and zirconium dioxide are utilized as reinforcement particles. Mechanical tests, such as the ultimate tensile strength, wear, salt spray corrosion test and microhardness test, are conducted effectively in the fabricated AA8079/TiN + ZrO2 composites. L9 OA statistical analysis is executed to optimize the process parameters of the mechanical and corrosion tests. ANOVA analysis defines the contribution and influence of each parameter. In the tensile and wear test, parameters are chosen as % of reinforcement (3%, 6% and 9%), stirring speed (500, 550 and 600 rpm) and stirring time (20, 25 and 30 min). Similarly, in the salt spray test and microhardness test, the selected parameters are: percentage of reinforcement (3%, 6% and 9%), pH value (3, 6 and 9), and hang time (24, 48 and 72 h). The percentage of reinforcement highly influenced the wear and microhardness test, while the stirring time parameter extremely influenced the ultimate tensile strength. From the corrosion test, the hang time influences the corrosion rate. The SEM analysis highly reveals the bonding of each reinforcement particle to the base material.

12.
Molecules ; 26(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805539

RESUMEN

In this work, boron carbide and graphene nanoparticle composite material (B4C-G) was investigated using an experimental approach. The composite material prepared with the two-step stir casting method showed significant hardness and high melting point attributes. Scanning electron microscopy (SEM), along with energy dispersive X-ray spectroscopy (EDS) analysis, indicated 83.65%, 17.32%, and 97.00% of boron carbide + 0% graphene nanoparticles chemical compositions for the C-atom, Al-atom, and B4C in the compound studied, respectively. The physical properties of all samples' B4C-G like density and melting point were 2.4 g/cm3 density and 2450 °C, respectively, while the grain size of B4C-G was in the range of 0.8 ± 0.2 µm. XRD, FTIR, and Raman spectroscopic analysis was also performed to investigate the chemical compositions of the B4C-G composite. The molding press composite machine was a fabrication procedure that resulted in the formation of outstanding materials by utilizing the sintering process, including heating and pressing the materials. For mechanical properties, high fracture toughness and tensile strength of B4C-G composites were analyzed according to ASTM standard designs. The detailed analysis has shown that with 6% graphene content in B4C, the composite material portrays a high strength of 134 MPa and outstanding hardness properties. Based on these findings, it is suggested that the composite materials studied exhibit novel features suitable for use in the application of shielding frames.

13.
Sci Rep ; 10(1): 15182, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32939001

RESUMEN

It is known that ultrasonication has a certain effect on thermophysical properties and heat transfer of nanofluids. The present study is the continuation of the authors' previous research on the effects of ultrasonication on the thermophysical properties of Multi-Walled Carbon Nanotubes (MWCNTs)-water nanofluid. Investigating the effects of ultrasonication time on samples' stability, rheological properties, and pumping power of a water-based nanofluid containing MWCNTs nanoparticle is the main objective of the present study. The two-step method has been employed to prepared the samples. Moreover, a probe-type ultrasonic device has been used, and different ultrasonication times have been applied. The samples' stability is investigated in different periods. The results revealed that prolonging the ultrasonication time to 60 min leads to improving the samples' stability while prolonging ultrasonication time to higher than 60 min resulted in deteriorating the stability. As for dynamic viscosity, it is observed that increasing ultrasonication time to 60 min leads to decreasing the dynamic viscosity of the samples. As for pumping power, it is observed that the maximum increase in fanning friction factor ratio is less than 3%, which shows that adding MWCNTs to water does not impose a considerable penalty in the required energy for pumping power.

14.
Sci Rep ; 10(1): 5185, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198454

RESUMEN

There are many debates on the preparation methods and the role of ultrasonication on the stability, thermophysical properties, and heat transfer performance of nanofluids. The present study, which is the continuation of the authors previous study, the effects of ultrasonication on the thermal and fluid dynamic performance of MWCNT-water nanofluid, over a different range of temperatures and solid concentrations, based on the thermophysical properties of the nanofluid, has been investigated. The effects of ultrasonication time on the stability and thermophysical properties of the nanofluid were studied over 30 days of the samples preparation. The thermophysical properties of the nanofluid have been experimentally measured at the optimum ultrasonication time. Using the experimental data, and employing different figures-of-merit, the effects that the addition of MWCNTs had on the heat transfer effectiveness and pumping power have been studied. It was confirmed that the nanofluid is a good heat transfer fluid, with a negligible penalty in pumping power. The thermal and fluid dynamic performance of the nanofluid in a microchannel heat sink has also been studied, by comparing the enhancement ratio of the convective heat transfer coefficient and the increase in pumping power.

15.
Materials (Basel) ; 12(21)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31690020

RESUMEN

The main purpose of the present paper is to improve the performance of the adaptive neuro-fuzzy inference system (ANFIS) in predicting the thermophysical properties of Al2O3-MWCNT/thermal oil hybrid nanofluid through mixing using metaheuristic optimization techniques. A literature survey showed that the use of an artificial neural network (ANN) is the most widely used method, although there are other methods that showed better performance. Moreover, it was found in the literature that artificial intelligence methods have been widely used for predicting the thermal conductivity of nanofluids. Thus, in the present study, genetic algorithms (GAs) and particle swarm optimization (PSO) have been utilized to search and determine the antecedent and consequent parameters of the ANFIS model. Solid concentration and temperature were considered as input variables, and thermal conductivity, dynamic viscosity, heat transfer performance, and pumping power in both the internal laminar and turbulent flow regimes were the outputs. In order to evaluate and compare the performance of the models, two statistical indices of root mean square error (RMSE) and determination coefficient (R) were utilized. Based on the results, both of the models are able to predict the thermophysical properties appropriately. However, the ANFIS-PSO model had a better performance than the ANFIS-GA model. Finally, the studied thermophysical properties were developed by the trained ANFIS-PSO model.

16.
Sci Rep ; 9(1): 15317, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653877

RESUMEN

A thermo-elastic contact problem of functionally graded materials (FGMs) rotating brake disk with different pure brake pad areas under temperature dependent material properties is solved by Finite Element Method (FEM). The properties of brake disk change gradually from metal to ceramic by power-law distribution along the radial direction from the inner to the outer surface. Areas of the pure pad are changing while the vertical force is constant. The ratio of brake pad thickness to FGMs brake disk thickness is assumed 0.66. Two sources of thermal loads are considered: (1) Heat generation between the pad and brake disk due to contact friction, and (2) External thermal load due to a constant temperature at inner and outer surfaces. Mechanical responses of FGMs disk are compared with several pad contact areas. The results for temperature-dependent and temperature-independent material properties are investigated and presented. The results show that the absolute value of the shear stress in temperature-dependent material can be greater than that for temperature-independent material. The radial stress for some specific grading index (n = 1.5) is compressive near the inner surface for double contact while it is tensile for a single contact. It is concluded that the radial strain for some specific value of grading index (n = 1) is lower than other FGMs and pure double side contact brake disks.

17.
Ultrason Sonochem ; 58: 104639, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31450310

RESUMEN

The primary objective of the present study is to investigate the possible effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid. The samples have been prepared in three different solid concentrations of 0.1, 0.3, and 0.5 vol.% applying different ultrasonication times, ranging from 10 to 80 min. The stability of the samples has been investigated over 30 days after preparation by conducting zeta potential analysis and visual observation. It is found that increasing the ultrasonication time until 60 min results in enhancing the stability of the samples in all the solid concentrations while prolonging the ultrasonication time leads to deteriorating the stability. The thermal conductivity of the samples has been experimentally measured over different temperatures ranging from 25 to 60 °C, and it is found that increasing the solid concentration and temperature results in enhancing the thermal conductivity. Moreover, the effects of ultrasonication time on thermal conductivity have also been studied, and it is found that increasing the ultrasonication time leads to a gentle enhancement in thermal conductivity. The maximum conductivity was achieved by applying 60 min ultrasonication. Thus, it is concluded that 60 min ultrasonication is the optimum time in which the thermal conductivity and stability reached their highest point.

18.
PLoS One ; 13(8): e0201345, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30091992

RESUMEN

This study deals with the fabrication of polyacrylonitrile (PAN) nanofibers via an electrospinning process followed by stabilizing and carbonization in order to remove all non-carboneous matter and ensure a pure carboneous material. The as-spun PAN fibers were stabilized in air at 270°C for one hour and then carbonized at 750, 850, and 950°C in an inert atmosphere (argon) for another one hour. Differential scanning calorimetry and Raman spectroscopy were employed to determine the thermal and chemical properties of PAN. Surface features and morphologies of PAN-derived carbon nanofibers were investigated by means of scanning electron microscopy (SEM). SEM micrograms showed that fiber diameters were reduced after carbonization due to evolution of toxic gases and dehydrogenation. The Raman spectra of carbonized fibers manifested D/G peaks. The Raman spectroscopy peaks of 1100 and 500 cm-1 manifested the formation of γ phase and another peak at 900 cm-1 manifested the formation of α-phase. The water contact angle measurement of carbonized PAN fibers indicated that the nanofibers were superhydrophobic (θ > 150o) due to the formation of bumpy and pitted surface after carbonization. In DSC experiment, the stabilized fibers showed a broad exothermic peak at 308°C due to cyclization process. The mechanical andThermal analysis was used to ascertain mechanical properties of carbonized PAN fibers. PAN-derived carbon nanofibers possess excellent physica and mechanical properties and therefore, they may be suitable for many industrial applications such as energy, biomedical, and aerospace.


Asunto(s)
Resinas Acrílicas/química , Fibra de Carbono/química , Nanofibras/química , Rastreo Diferencial de Calorimetría , Fibra de Carbono/ultraestructura , Ciclización , Microscopía Electrónica de Rastreo , Nanofibras/ultraestructura , Espectrometría Raman , Propiedades de Superficie , Resistencia a la Tracción
19.
Materials (Basel) ; 8(10): 7017-7031, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-28793615

RESUMEN

This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN) fibers as a sensor material in a structural health monitoring (SHM) system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and ß phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM) applications in different industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...